On the computation of steady hopper flows III: Model comparisons

نویسندگان

  • Pierre-Alain Gremaud
  • John V. Matthews
  • David G. Schaeffer
چکیده

Gravity flows of granular materials through hoppers are considered. For hoppers shaped as general nonaxisymmetric cones, i.e., “pyramids”, the flow inherits some simplified features from the geometry: similarity solutions can be constructed. Using two different plasticity laws, namely Matsuoka-Nakai and von Mises, those solutions are obtained by solving first order nonlinear partial differential algebraic systems for stresses, velocities, and a plasticity function. A pseudospectral discretization is applied to both models and the resulting flow fields are examined. Some similarities are found, but important differences appear, especially with regard to velocities near the wall and normal wall stresses. Preliminary comparisons with recent experiments [11] based on the present results indicate that for slow granular flows the lesser known Matsuoka-Nakai plasticity law yields better results than more common models based on a von Mises criterion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

On the computation of steady hopper flows I: stress determination for Coulomb materials

The problem of determining the steady state flow of granular materials in silos under the action of gravity is considered. In the case of a Mohr-Coulomb material, the stress equations correspond to a system of hyperbolic conservation laws with source terms and boundary conditions. A higher order Discontinuous Galerkin method is proposed and implemented for the numerical resolution of those equa...

متن کامل

Instabilities in Granular Flows

The flow and handling of granular materials is of major importance to many industries. Yet despite efforts over several decades, the modeling of such flows has achieved only modest success. Dense gravity-driven flows in hoppers have been often modeled as elastic-plastic continua, for example. In this picture, the granular material flows as a plastic with a frictional yield condition, and deform...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

Development of an Implicit Numerical Model for Calculation of Sub and Super Critical Flows

A two dimensional numerical model of shallow water equations was developed tocalculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady stateequations were discretized based on control volume method. Collocated grid arrangement was appliedwith a SIMPLEC like algorithm for depth-velocity coupling. Power law scheme was used fordiscretization of convection and dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2006